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Existence of Quadrature Formulae with 
Almost Equal Weights* 

By K. SaLkauskas 

Abstract. The condition that an interpolatory quadrature formula on n nodes have degree 
of precision at least n and positive weights defines a homeomorphism between the sets of 
admissible nodes and weights of such formulae for each n. This is used to prove that the 
only formulae having "almost equal" weights are the Chebyshev formulae. 

1. Introduction. It is well known that for many weight functions it is not possible 
to construct Chebyshev quadrature formulae of high order with real nodes. For 
example, with the weight function w 1, nonreal nodes appear for n = 8 and n > 9, 
where n is the number of nodes. On the other hand, if w(x) = (1 - x2Y)2, then the 
corresponding Chebyshev formulae on [-1, 1] exist for all positive integers n. In 
those cases where the (equally weighted) Chebyshev formulae do not exist we may 
ask whether it is possible to select real nodes in such a way that the weights are 
almost equal in some sense, while the formula retains the degree of precision of 
the Chebyshev case. For example, Ostrowski [21 has asked for the smallest constant 
C. > 1 such that there exists an n-point quadrature formula whose weights have 
ratios less than or equal to C,. Alternatively, one may choose to employ the sum 
of squared weights as a measure of the equality of weights. When the weights are 
equal (to each other), the sum of their squares attains its absolute minimum given 
that the sum of the weights is a positive constant, say ao; the last condition is in- 
dependent of nodes and expresses the requirement that the formula be exact for a 
constant function. However, in general the weights are functions of the nodes and 
one may wonder whether the sum of squared weights as a function of the nodes 
can have other local minima. What both the above-mentioned approaches to the 
problem have in common is this. Let the weights of an n-point quadrature formula 
be hi, * , hn. Let h = (hl, * *, hn). We have E = ao0, a constant. Restricting 
ourselves to formulae with positive weights, we let 6 = th: E hi = ao, hi > O}. 
Let a continuous nonnegative function 4 be defined on d' with the property that b 
has one, and only one, minimum on d' at the point h = (ao/n, * * *, ao/n). Denote 
the nodes by xl, * * *, xn, and let x = (xI *... , x*). Then h 3 t(x), and b(h) = P(x). 
We ask whether V* has local minima for admissible real points x. It may not be 
obvious that Ostrowski's proposal leads to the consideration of such a function b; 
this will be dealt with in the last section. We shall prove the following 
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(i = 0, 1, * * * , n), have positive weights, nodes in (-1, 1), and a local minimum value 
of cV, are the Chebyshev formulae. 

The next section contains the definitions needed to make the terminology of 
this section precise, as well as some well-known results that will be needed in Section 3 
for the proof of the Theorem. 

2. Interpolatory n-Point Formulae. Let fj(t) = t' (j = 0, 1, ** ), and let w be 
a nonnegative function that is Riemann-integrable on [-1, 1] in either the proper 
or improper sense, and whose integral over [-1, 1] is positive. We call w a weight 
function. In what follows, w will be considered fixed. For a fixed positive integer n 
and for any function f that is defined on (-1, 1) and such that wf is integrable on 
(-1, 1], we define two linear functionals I and Qn by 

1 ~~~~~n 
I(f)- Jr wf, Qn(f) hif(xj. 

In Qn the weights hi are nonzero, and the nodes xi are real, distinct and lie in (-1, 1). 
The weights and nodes are parameters whose values determine how well Q,,(f) ap- 
proximates I(f). Qn(f) is an n-point quadrature formula intended to approximate I(f) 
and is interpolatory if, and only if 

(2.1) Q (fO) = I(f ), ( = 0, 1, , n -). 

This can be accomplished for an arbitrary set of real and distinct nodes by setting 

(2.2) h 
r'(xi) 11 t dt, (i = 1, 2, * n), 

where ir(t) = (t - x)(t - x2) ... (t - xn). If we set I(fj) = a,, then (2.1) becomes 

Ehix' = axj, (.i = O, 1, n* - n 1). 
i-i 

For any specific set of nodes and corresponding weights given by (2.2) we define 
the degree of precision of Qn to be the smallest integer d such that 

Qn(fd+l1) 5-? I(fd ) . 

Since Qn is interpolatory, d _ n - 1. It is also well known that the Gauss formulae 
have d = 2n - 1, and that d cannot be increased. Hence n - 1 < d < 2n - 1. 
Chebyshev formulae have degree of precision at least n, and this is a condition that 
we shall impose on Qn. Hence the nodes and weights of Qn must satisfy the equations 

(2.3) Ehixf = avj (j = O, 1, **,n). 
i-1 

Let x = (xl, *.., xn), and let 

(2.4) n = {x: I(7r) = 0,xl < x2 < * < Xnl 

To every x E Sn there corresponds an interpolatory quadrature formula whose 
weights we may obtain from (2.2), and the condition I(Ir) = 0 is necessary and sufficient 
for the formula to have degree of precision n. We shall be concerned with formulae 
having positive weights, and therefore restrict x to a subset DC of 8,,. It is easy to see 
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from (2.2) and the fact that x1 < x2 < * < x, for x EE S, that h, > 0 (i = 1, 
2, .., n), if and only if 

(2.5) (-1)"- f w(t)ir(t)/(t - xi) dt > 0, (i = 1, 2, , n). 
-1 

We define 9C to be that subset of 8,, in which (2.5) holds and in which -1 < xi, 
x, < 1. Then E is open in 8n, and every point of S is an interior point. DC is not 
empty since the nodes of a Gaussian formula corresponding to the weight function 
w satisfy the requirements of 9C. 

Let (h/, * *_, hn) = h denote the set of weights of Q,,, with hi associated with xi. 
Let (P = {h: L hi = ao, hi > 0}. Clearly, Eqs. (2.2) or their equivalent (2.1) define 
a mapping t of SC into (P. In fact, for each x E 9C there is determined a unique h E (P. 
Let 3C = t(C). Then t maps C onto 3C. 

3. Proof of the Theorem. 
LEMMA 1. If x, y CE X, and t(x) = t(y), then x = y. 
Proof. The hypotheses of the Lemma imply that 

n ~~~~n 
S hif(xi) E hif(yi) 

i-i i-i 

for all polynomials f of degree ? n. We shall construct a polynomial of degree _ n for 
which the equality does not hold when x 5 y. 

Let si = xi- yi (i = 1, 2, * , n), and consider the sequence I si }. Not more 
than n - 1 sign changes can occur between the terms of the sequence. From tsij } 
extract a sequence {till by deleting all zero terms of {siln and replacing every sub- 
sequence of terms with the same sign by the first term of that subsequence. The 
resulting sequence { ti l has at least one term if x 5 y, but not more than n, so 1 < 
p ? n. Now, if p > 1, t. = xr - yr > 0 and tm+ x - yJ < 0 
select (m E [x.-1, xJ]. If 4, < 0 and tm+l > 0, select (m C [YJ-1, y8]. Let this be done 
for the whole sequence { ti } 1. Let 

p-1 

f'(t)-(l= - sgn tl r (t -,) p > 

=sgnti, p= 1. 

Then 

rt 

f(t) f'(r) dr 

is a polynomial of degree p ? n. It has the property that f(xi) _ f(yi), with equality 
only if xi = yi. Since x, y C 9C, we have hi > O. Hence 

n n 

Ehif(Xi) 
> 

Ehif(y,), x 0 y. 

This is a contradiction. 
It will be convenient to abbreviate Eqs. (2.3) as 

F3(x; h) = 0 ( = 0, 1, ,n). 
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The equation F0(x; h) = 0 is part of the definition of Xe and does not involve the nodes. 
We now prove 

LEMMA 2. The mapping t: sC e X is bicontinuous. 
Proof. For every x E DC, h = t(x) E ae may be defined by the equa- 

tions F,(x; h) = 0 (j = 0, 1, -, n- 1). The Jacobian 

a(Fo, Fl, - * F.-,) =V. 
o(hl, h2, *., h.) 

where V is the Vandermonde determinant of the nodes, and does not vanish on SC X 3C. 
Hence t is continuous. Also 

0O(F,, F2, , 1% ,F)n 0(x1, x2, * 
, x Fn) = n! V hh # O, (x; h) E DC X C. 

dO(X1, x2, * * * , Xn) l 

If, for h E JC, we consider t-l to be defined implicitly by the last n of the Eqs. (2.3), 
then the above implies that t-l is continuous, and t is a homeomorphism of SC onto Sc. 

Brouwer's Invariance of Domain Theorem [3] can be employed to show that 
every point of 5C = -(OC) is an interior point relative to (P, for the condition I(ir) = 0 
is equivalent to 

(3.1) aY + a.-la, + .+ ?oan = 0, 

where 7r(t) = tn + altl" + * + an. We identify 7r(t) with the point (al, * , an) E 

f!R,, and (3.1) defines a hyperplane Q' in (Rn. This identification represents a homeo- 
morphic map if of Sn into Ql, and the image of Sn is open in Q1. Since SC is open 
relative to Sn, 4,(SC) is open relative to ,t(Sn) C Q1. Hence 4,(SC) is open in Q,. Now 3C 
is a homeomorphic image of 4,(SC) under tI-' and is a subset of the set (P contained 
in the hyperplane Q2: n hi = ao. Hence, by Brouwer's Theorem, SC is open in Q2. 

But (P is also open in Q2. so that 3C is open in (P. 

If we now consider the function 4b on 6P, having its only local minimum at h= 
(ao/n, * *, o 0/n), then, if h EX x, the problem of minimizing 4) as a function of 
the nodes, i.e. 4V, has no solution in SC. But the statement that h EE C, implies the 
existence of the Chebyshev formula with real nodes. This proves the theorem. 

4. Ostrowski's Proposal. Consider h E: (. Let 4(h) = maxi, i hi/h. The constant 
CQ required is 

C,,=min 4)(h), 
hEIC 

if it exists. Clearly minh,p b(h) = 1 and occurs at h = h = (ao/n, ... *, ao/n). 
Suppose that 4) has another local minimum at h = h* 5 h. Then 4(h*) > 1. 

Therefore, we can order the components of h* as follows: 

h*l >h*2 >*b >h* > h*l > h*, > ... > h*A > O, ,u + X =n. 

Now let e > 0 be a number < l-(h?*- h,). Consider the point h' with coordinates 
obtained from those of h* via 

h~ MI ?k ;s = h 1 + , , (k = 1, * I ,p = 1, * *,). I k 2 
E E 
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Then h' E 6', and 

h~, h h - / hh * = 
(D (h f) = -% I - - -&hI 

h* +E/X h 

Hence every neighbourhood of h* contains points h' at which 4?(h') < 4(h*). It 
follows that b has one, and only one minimum, at h, and if h T xe, then no smallest 
Cn can be found. 

The results presented here are not valid if the degree of precision is not required 
to be as great as n, for then, if d is only required to be n - 1, t is no longer a homeo- 
morphism. If d > n, then, in view of the additional constraints imposed on the nodes, 
it -may be possible to obtain interpolatory quadrature formulae which minimize b 

and have real nodes. It may also be of interest to consider those cases in which 
Xi = -I or xn = 1. 
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